

Development of a Freight Transportation Network Optimization Strategy – An Overview

August 4, 2015

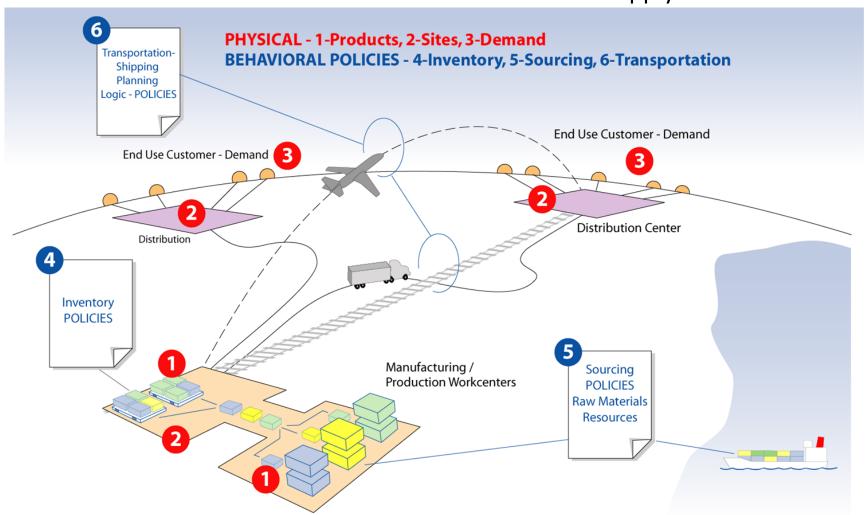
Quetica History

- □ 1997 Founders of PowerTrackTM Business
 - Architected, developed & operated B2B technology & transaction processing platform
 - Freight Audit and Payment Network
 - Transportation and Supply Chain Automation Solutions
 - Third Party Logistics (3PL)
 - Global Trade Bank
 - Transportation and Supply Chain Technology Consulting practices
 - 220 of Fortune 1000 customers, government agencies and 12,000+ service providers
 - Operations in NA, AP, EU and India supporting 42 countries in 23 languages
- □ 2009 Founders of the Syncada[©] from Visa, Global Multi-Bank Network
 - Visa bought JV of global payment and financing business
- □ 2011 Consulting business branded as QueticaTM
 - Provide solution-neutral, technology and management consulting to commercial, government and industry service provider clients
- 2014 Re-launched Web-based Fleet Team Fleet Management SaaS Solution

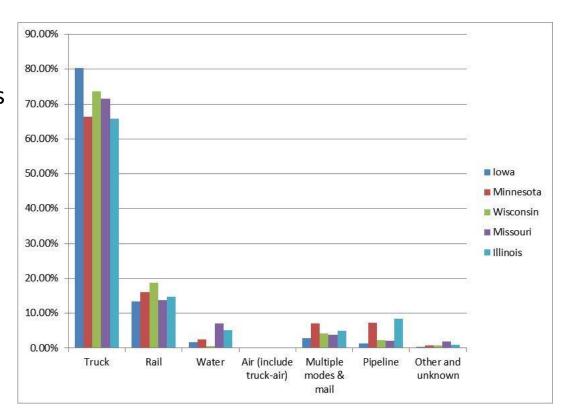
Quetica Principals

- Rick Langer, Managing Director & President
 - Founder and general manager of PowerTrack network.
 - A visionary leader to translate business strategy into maximum profits.
 - Expert in growing revenue; reducing costs; and enhancing profitability.
- Holly Zimmerman, Executive Director & COO
 - Led PowerTrack new program expansion efforts.
 - Leader in new product and business innovation.
 - Expert in converting complex problems into practical solutions for clients.
- Weiwen Xie, Ph.D., Executive Director & CTO
 - Chief architect and CIO of PowerTrack
 - Leader in innovating and developing new products
 - Expert in planning and delivering technology solutions to improve client's revenue and profitability

Approach Overview


Project Background

- Vision: To effectively identify and prioritize investment opportunities for an optimized freight transportation network to lower transportation costs and promote business growth in Iowa.
- lowa DOT can optimize statewide freight transportation network to reduce transportation costs
 - Traditional approaches focus more on capacity planning
 - Traditional methods don't quantify cost saving opportunities in a multimodal network
- This project uses a demand-based supply chain network design and optimization approach to Iowa DOT planning


Supply Chain Network and Optimization

□ ~80% of the landed costs are locked in with the supply chain network

Opportunities in Current Freight Transportation

- The chart shows the percentage breakdown of tonnage by mode in 2012 domestic freight in 5 states
- lowa has the highest % of tonnage in truck among the five states
- Opportunities exist to improve rail and intermodal transportation to reduce transportation costs for lowa businesses

Data Source: FAF 3.5, Federal Highway Administration

Optimization Analysis

Quantitative Analysis

- Cost, lead time requirement, capacity, etc.
- Economic viability
- Improved network resilience

Qualitative Analysis

- Strategic alignment
- Increasing network capacity and resiliency
- Tax incentive / funding availability
- Job creation and local buy-in
- Service levels / transportation time
- Road mile reduction
- Project implementation risks

Benefits of Multi-Modal Freight Optimization

- Effectively identify and prioritize investment opportunities to lower transportation costs for businesses
 - Leverage current transportation network to deliver optimized results
 - Identify new infrastructure opportunities to optimize freight transportation network
- Identify economic development opportunities to recruit new companies to lowa
- Provide a foundation model to help existing lowal businesses optimize their supply chains
- Identify opportunities to improve network resiliency

Project Approach

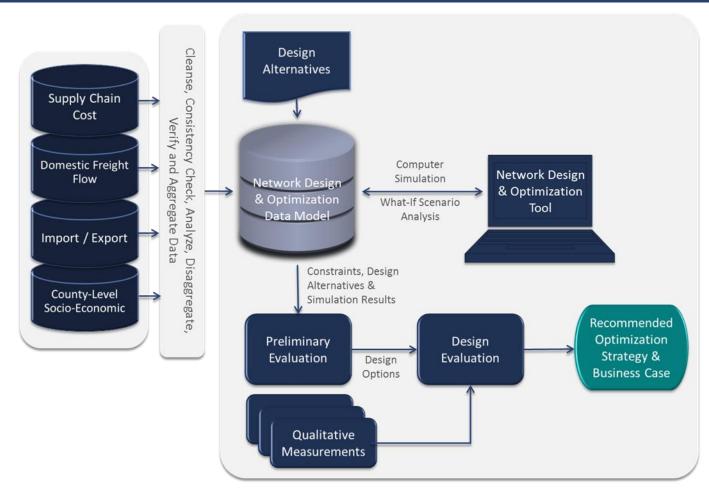
Analysis of Network Demand and Capacity

- Identification and prioritization of demand areas
- Analyze network demand and capacity

Performance Measurement and Constraints Analysis

- Use quantitative and qualitative measurements
- Identify and prioritize current and forecasted network performance constraints

Creating and Prioritizing Optimization Strategies

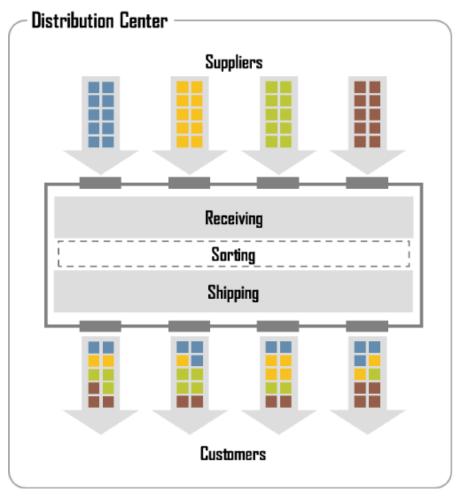

- Develop pragmatic short-term and long-term optimization strategies
- Does not intend to identify and evaluate all optimization strategies

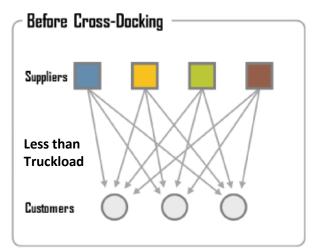
Business Case Development

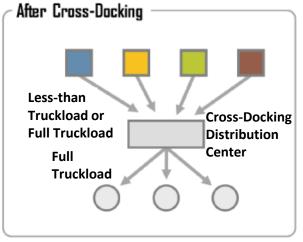
- Conduct financial analysis and develop financial models
- Develop actionable recommendations with justifications

Business Architecture Overview

Analysis Examples


- Road network and truck transportation
 - Truck cross-docking facilities for freight consolidation
 - Road corridor resiliency
- Rail network and transportation
 - Assessing values of short line rails
 - Intermodal facilities to enable low cost, reliable rail shipments
 - Transloading facilities to provide better rail access
- Waterborne transportation network
 - New terminals for better access to barge transportation
 - Leveraging other waterborne shipping opportunities
- Trade routes for import/export
- Risk quantification and network resilience optimization




Case Study 1 – Cross-Dock Facility

Cross Dock Overview

Case Study 1 - Cross-Dock Opportunity Analysis

- Evaluated total cost saving opportunities in four regions
- Region 1 has the highest cost saving, but Regions 2 & 3 are more viable options because of existing access to interstate highways
- Selected <u>Region 2</u> as the primary site candidate with the concept to colocate cross-dock and intermodal facilities in a logistics park

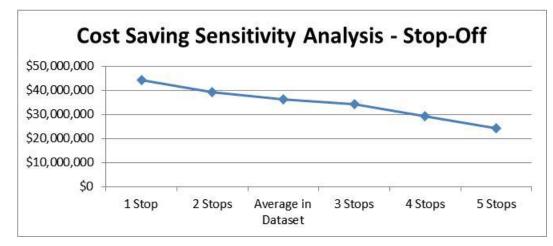
Location	Total Annual Saving Opportunity		
Region 1	\$909 Million		
Region 2	\$883 Million		
Region 3	\$908 Million		
Region 4	\$713 Million		

Case Study 1 - Cross-Dock Network Impact

Current State

Future State

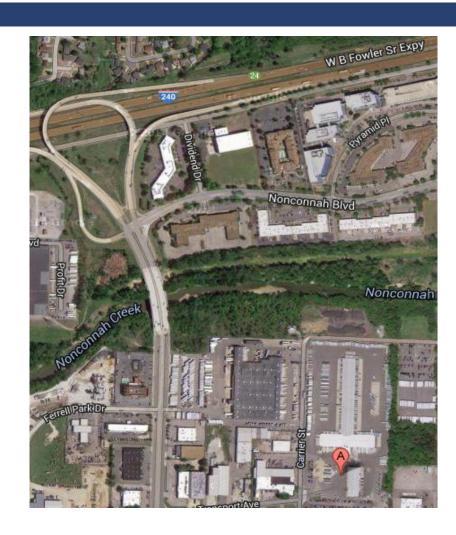
- Benefits:
 - Leverage freight consolidation to reduce transportation costs
 - Reduce long distance truck traffic and improve environmental sustainability



Investment Analysis – A Mid-Sized Cross Dock in Region 2, Iowa

Assumption

- Build a 150-door, 600 trailer parking, 120,000 sq. ft. cross dock facility on 15 acres
- 200 truck pickups daily, 52,000 truck pickups yearly (5 days a week, 52 weeks a year)
- 5.30% of overall market opportunity
- Cross-docking fee (\$450/truck) covers all operational expenses and profit margin
- Initial Investment: \$21 million
- Annual Net Saving Opportunities: \$24.4 MM to \$44.3 MM; Average \$36.2 MM


Item	Cost
Construction Cost	\$ 5 million
Doors	\$1 million
15 acres of land	\$5 million
Sortation and support systems	\$10 million

Comparable Cross-Dock - Memphis

- Carrier-owned transportation crossdocking
- Old Dominion, a \$535.5 MM trucking company, operates a 150door cross-docking facility on ~16 acres in Memphis employing 308 people
- Old Dominion plans to replace the 150-door site by building a 229-door cross-docking facility, creating 188 new jobs and spending \$31.3 million
- The average salary of the new hires will be \$52,111

Comparable Cross-Dock – Breinigsville, PA

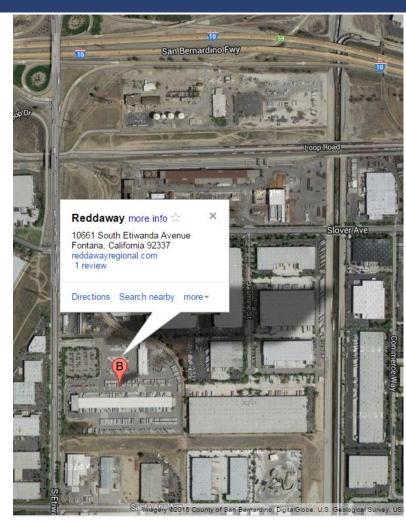
- Provider-owned transportation cross-docking
- NFI is \$1B provider of logistics, warehousing, transportation, and distribution services
- Facility Features:

■ Square Footage: 254,000

Building Height: 38'-47'

Trailer Spots: 550

Dock Doors: 150


- ~40 acres
- Close proximity to CSX and Norfolk Southern intermodal rail yards
- Other Services provided: Contract Packaging & Decorating, Light Manufacturing / Assembly, Product Labeling, Reverse Logistics, IT Integration
- Breinigsville was a Ag and Mining town, turned into logistics hub (Home Depot, Amazon, Shoprite, etc.)

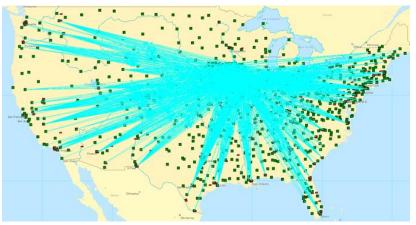
Comparable Cross-Dock – Fontana, CA

- Provider-owned distribution crossdock provided to L&L Nursery Supply to consolidate shipments from over 60 manufacturers to deliver full truckloads to major retailer
- Reddaway Fontana Service Center is owned by Reddaway, a \$335 million subsidiary of YRC Worldwide
- L&L is West Coast's leading manufacturer and distributor of lawn and garden products
- The 160-door facility is located on 17.6 acres

Case Study 2 - Intermodal Facility

Opportunity Size – Focusing on High Volume Origin-Destination Pairs

The total market opportunity for high volume Origin-Destination pairs: \$289 million net annual savings


Item	Opportunity
Annual Gross Transportation Saving	\$412 Million
Empty Container Reposition Cost	(\$123 Million)
Total Outbound Container Number	247,000
Total Inbound Container Number	42,000
Total Container Shortage	205,000
Annual Net Saving	\$289 Million
Annual Lift Number	494,000

Case Study 2 – IM Facility Network Impact

Current State

Future State

- Optimization Benefits:
 - Leverage rail network to reduce transportation costs
 - Reduce truck traffic and improve environmental sustainability

Investment Analysis – a Mid-Sized Intermodal Facility in Iowa

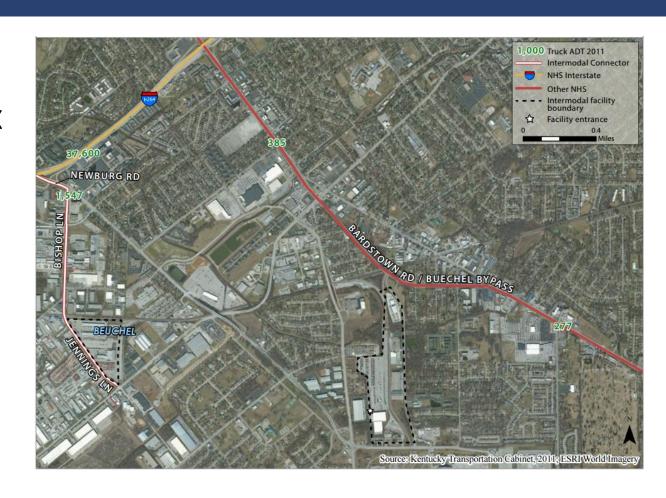
Conservative Case vs. Base Case A Mid-Sized Intermodal Facility in Iowa

	Annual Lift No.	Annual Net Cost Saving	Facility Size	Initial Investment
Conservative Case	32,000	\$23 million	16 to 20 acres	< \$15 million
Base Case	56,000	\$40 million	30 to 35 acres	\$15 million

Comparable Facility – CSX Louisville, KY

Investment Example

- In 2011, CSX invested \$15MM to build a 34-acre IMF in Louisville, KY
- 34-acre intermodal facility capacity to handle 68,000+ lifts per year



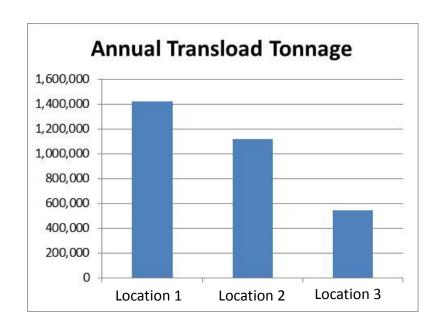
Comparable Facility – NS Louisville, KY

One of the three IM terminals in KY, 9 miles away from CSX terminal

- 30-acre facility
- The capacity of the terminal is ~55,000 lifts per year
- In 2012, the IM terminal handled 40,000 lifts

Comparable Facility – UP Council Bluffs

- Existing Council Bluffs Intermodal Facility
 - Shared by UP and Iowa Interstate Railroad System
 - COFC facility processing <65,000 lifts per year (62,000 in 2012)


Case Study 3 - Transloading Facility

Opportunity Analysis

- Transload facilities allow shippers to transfer freight between two modes and leverage lower cost shipment options
- In the statewide model, three locations are identified as candidates for transload facilities to provide largest cost saving opportunities

Investment Analysis – Transload Facility

Base case financial

Region	Annual Railcar	% of Tonnage	Annual Saving	Facility Investment	Land Cost	Total Investment
Location 1	1634	11.98%	\$5,462,720	\$4.2 Million	\$1.31 Million	\$5.5 Million
Location 2	1634	15.17%	\$4,966,715	\$4.2 Million	\$1.31 Million	\$5.5 Million
Location 3	817	15.65%	\$2,611,274	\$4.2 Million	\$1.31 Million	\$5.5 Million

Conservative case financial

Region	Annual Railcar	% of Tonnage	Annual Saving	Facility Investment	Land Cost	Total Investment
Location 1	583	4.27%	\$2,788,109	\$4.2 Million	\$1.31 Million	\$5.5 Million
Location 2	427	3.97%	\$1,885,382	\$4.2 Million	\$1.31 Million	\$5.5 Million
Location 3	317	6.08%	\$1,402,065	\$4.2 Million	\$1.31 Million	\$5.5 Million

Comparable Transload Facility – Trans Load Carriers, Inc.

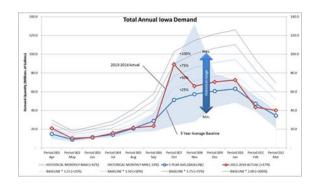
- Served and switched by BNSF, Norfolk Southern and CSX
- Located within two miles of the major highways and interstates in Birmingham, AL
- Approximately 30 acres, 130,000 sqft of enclosed warehouse space, two rail spurs providing 8 boxcar spots and 12 combined centerbeams and flatcar spots

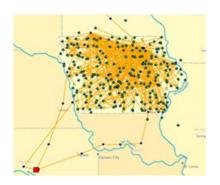
Comparable Transload Facility - Patriot Rail

- Along the 68-mile Louisiana and North West Railroad that connects with Kansas City Southern and Union Pacific
- □ Near I-20 in Gibsland, LA, about 100 miles east of Shreveport
- □ Approximately 40 acres, expected to handle over 5,000 carloads in the first year
- □ Patriot Rail invested \$3.3 million in developing the facility in 2011

© 2015 Quetica, LLC. All rights reserved

Case Study 4 – Propane


Iowa Propane Supply Chain


- Severe propane shortage and sharp price increases for residential and commercial users in 2013-2014 due to supply chain issues
- Applying same scientific principles to propane supply chain:
 - To be better informed when demand for propane reaches critical levels and lowa faces potential shortages
 - To proactively define viable contingencies to better manage extreme fluctuations and disruptions in propane supply in future
- Propane supply chain optimization analysis focuses on:
 - Ability to handle current demand with current infrastructure
 - Ability to handle future increases in demand with current infrastructure
 - Impact of changing and/or new infrastructure constraints
- Identifies thresholds for when changes in demand or constraints limit ability to meet propane demand at reasonable price

Optimization Approach

- Obstacles are constraints in:
 - Transportation network (e.g. pipeline and terminal capacity, truck availability)
 - Inventory management (e.g. storage in market centers, in bulk in Iowa and at end users)
- Requires understanding of propane supply chain infrastructure including:
 - Demand fluctuations for crop drying and heating
 - Storage requirements (e.g. capacity, reorder points)
 - Sourcing practices (e.g. contracting, contingency supply)
 - Transportation capacity across modes
- Analyzing objectively using network optimization methodology to run simulations and conduct what-if analysis to identify constraints and evaluate alternatives

Questions

Richard Langer, Managing Director

Quetica, LLC

651-964-4646 x800

richard.langer@quetica.com

www.quetica.com

