

The Positive Train Control Mandate

National Grain and Feed Association San Diego, California March 13, 2011

PTC – Why Are We Installing the Technology?

- Mandated by 2008 rail safety bill.
- Required for:
 - -All main lines handling passenger trains
 - All Class I main lines with a traffic density greater than 5 million annual gross tonmiles per mile handling toxic inhalation hazard (TIH) materials.
- Installation by December 31, 2015.

PTC – What is it ?

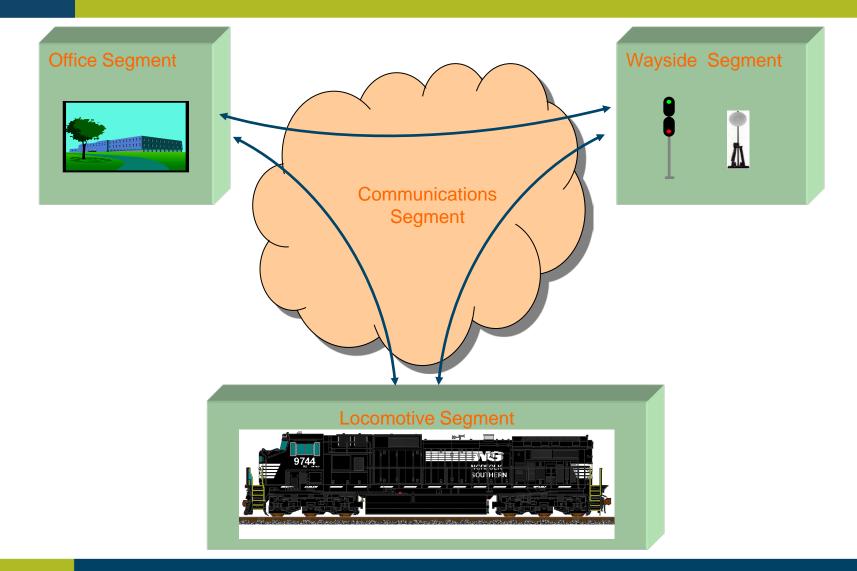
An overlay to the existing signal system that is intended to prevent:

- train-to-train collisions,
- over-speed derailments,
- incursions into established work zone limits,
- movement of a train through a switch left in the wrong position.

PTC – What does it do ?

PTC essentially does only three things:

- Develops and provides very precise train location information.
- Compares that train location information to
 - Data on geographic and geometric descriptions of the rail line, and,
 - Current information on authorities to operate trains or equipment on the rail line and adjacent lines.
- If it identifies conflict(s), either stops, or slows down, a train.

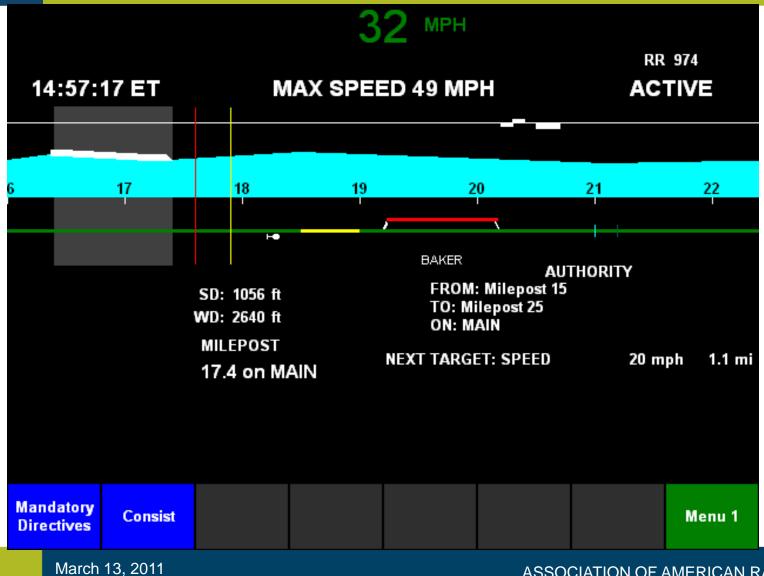


Because it is an overlay, PTC

- Does not change the method of operation
- Does not replace the existing signal system where one exists

PTC – How Does it Work ?

SLIDE 6 March 13, 2011



Cab Display Unit

Cab Display Unit

What is the Scale of PTC Deployment ?

Locomotives

- There are approximately 24,000 locomotives in the Class I fleet Both mainline and local locomotives may be equipped Class II and III fleets are not yet required to be equipped Approximately **17,000 Class I locomotives** will need to be equipped with PTC Approximately 4500 commuter
- locomotives and cab cars to be equipped

71 percent of the Class I locomotive fleet will need to be equipped with PTC

Network

- There are 94,209 route miles of Class I mainline track and 139,326 track miles of mainline in the US
- PTC will be installed on both signaled and non-signaled Class I mainline tracks
- PTC will need to be installed on an estimated **73,467 Class I route** miles
 - 51,545 miles with CTC systems 8,916 miles with ABS systems 13,006 miles non-signaled

78 percent of Class I mainline route miles will need to be equipped with PTC

In 2009, FRA estimated installation at about \$5 billion for freight railroads alone, \$5.8 billion for the national system.

As the industry gains a better understanding of the complexity of the system, the installation process and the limitations of existing technology, publicly announced preliminary cost estimates now exceed FRA's number by a substantial margin.

Publicly announced costs for Class I's -	\$5.8 billion
Publicly announced costs for Commuters -	\$2.0 billion
Publicly announced cost for Amtrak -	\$0.3 billion
Total publicly announced costs for all -	\$8.2 billion

Why Aren't the Business Benefits Greater ?

Previously Stated PTC Benefit	Oliver Wyman Estimate	Oliver Wyman Rationale
Communications for Precision Dispatching	\$190.9 M	Precision dispatching implemented separately from PTC Some benefit from increased location data provided via GPS
Line Capacity	\$191.6 M	Overlay system may actually reduce line capacity Sole benefit from dynamic track authority support in dark territory
Fuel Economy	\$0	All sources of benefit are dependent on technologies being developed and implemented that are not tied to PTC
Train Work Events	\$0	Railroads have implemented or will implement technology not tied to PTC that provides this benefit
Track Maintenance Work Blocks	\$0	Railroads have already implemented working technological solutions not tied to PTC
Locomotive Service Robustness	\$0	Railroads already possess relevant technology not ties to PTC. Reliability issues from additional PTC components may offset
Elimination of Track Circuits, Line Signals	\$30.7 M	Only selected signals could be removed, track circuits remain with PTC overlay system – any change requires FRA approval
Railcar Velocity	\$0	Overlay PTC may actually reduce velocity Most velocity benefits tied to precision dispatching, not PTC
Shipper Benefits	\$0	All sources of benefit are dependent on technologies being developed and implemented that are not tied to PTC
Total Benefit	\$413.2 M	

Note: All benefits are shown in 2009 dollars on a net present value basis, using a 7 percent discount rate and a 20-year planning horizon.

March 13, 2011

What Are the Business Risks Going Forward?

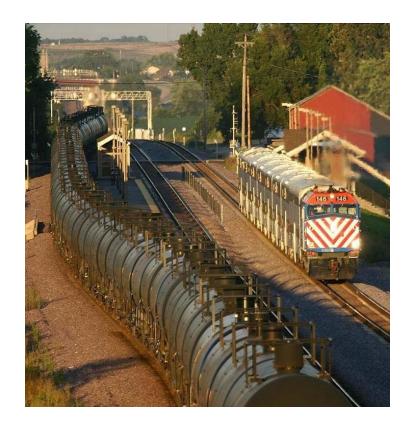
Key Issues-

- New technology
 - Cost escalation
 - Complexity and reliability
 - Communications
- Loss of Capacity

Key Impacts -

- Priority access to scarce capital
 - Driven by legal deadline
 - Limits other technology innovation
- Interoperability mandate constrains future technology adaptations

- April 16, 2010 40 railroads submitted PTC Implementation Plans and PTC Development Plans or a Notice of Product Intent.
- July 15, 2010 Deadline for FRA to approve or disapprove all PTCIPs, identifying specific areas in which the plan is deficient. As of February 7, 2011-
 - FRA had approved 23,
 - Had provisionally approved 14, and,
 - Had disapproved 3.
- On March 2, 2011 AAR and FRA agreed to delay court hearings on issues related to PTC implementation rules pending reopening of rulemaking proceedings on the breadth of PTC application.


Nature of the Court Approved Agreement?

- FRA has agreed to open a rulemaking on the footprint required for PTC installation and whether it should be based on traffic patterns of 2008 or 2015.
- Should AAR so petition, FRA will open rulemakings on limited operations, yard operations and en-route system failures
- Should eventual agreement be reached on these issues, AAR will withdraw its court action against FRA.

Positive Train Control Implications

- Will absorb most growth capital and capacity improving technology spending for next 6 years.
- Will absorb capital otherwise used for productivity improvement ultimately resulting in a more expensive rail system.
- First generation systems will <u>reduce</u> capacity of rail network.
- Ongoing operating expense will reduce net operating income equal to 40% of growth capital.
- Thus, PTC may represent a <u>long-term</u> <u>threat</u> to rail capacity enhancement.

Association of American Railroads www.aar.org

